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Efficient computation of mean drag for the subcritical flow past
a circular cylinder using general Galerkin G2
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SUMMARY

General Galerkin (G2) is a new computational method for turbulent flow, where a stabilized Galerkin
finite element method is used to compute approximate weak solutions to the Navier–Stokes equations
directly, without any filtering of the equations as in a standard approach to turbulence simulation, such
as large eddy simulation, and thus no Reynolds stresses are introduced, which need modelling. In this
paper, G2 is used to compute the drag coefficient cD for the flow past a circular cylinder at Reynolds
number Re=3900, for which the flow is turbulent. It is found that it is possible to approximate cD to
an accuracy of a few percent, corresponding to the accuracy in experimental results for this problem,
using less than 105 mesh points, which makes the simulations possible using a standard PC. The mesh
is adaptively refined until a stopping criterion is reached with respect to the error in a chosen output of
interest, which in this paper is cD. Both the stopping criterion and the mesh-refinement strategy are based
on a posteriori error estimates, in the form of a space–time integral of residuals times derivatives of the
solution of a dual problem, linearized at the approximate solution, and with data coupling to the output
of interest. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The flow past a circular cylinder is probably one of the best documented bluff body flows, inves-
tigated extensively both experimentally and computationally. For an overview of the underlying
physics of this problem, including many results, we refer to [1, 2].

In this paper we focus on Reynolds numbers Re=100 and 3900, with the Reynolds number
being based on the cylinder diameter D. For Re=100, the flow is two dimensional, with a
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wake shedding alternating vortices in a regular manner, referred to as a von Kármán vortex
street.

For Re=3900, we still have vortex shedding, but now the flow is three dimensional, and we
have a large turbulent wake attached to the cylinder. In the case of the laminar flow at Re=100,
computational approximation is straightforward by discretizing the Navier–Stokes (NS) equations,
for which there are various well-understood approaches, such as finite element methods or finite
volume methods.

For turbulent flow, as in the turbulent wake behind the cylinder at Re=3900, the situation is
less clear. For computational simulation of turbulent flow, there are several issues to be considered:
(i) to resolve all the physical scales in a direct numerical simulation (DNS) of the NS equations,
the number of spatial mesh points needed may be estimated to be of the order Re9/4, which thus
makes DNS impossible for high Re and (ii) turbulent flow is a chaotic system [3] in the sense
that pointwise output, such as the velocity at a certain point at a given time in the turbulent
wake, is impossible to compute to any tolerance of interest, due to the extremely high sensitivity
to perturbations with respect to pointwise output, whereas certain mean value outputs are less
sensitive and may be determined up to a tolerance of interest.

Thus, for high Re turbulent flow we cannot afford to resolve all the physical scales in the
problem and even if we could, we would not be able to obtain pointwise accuracy, due to the
extreme pointwise sensitivity to perturbations in a turbulent flow, which would make a DNS
solution pointwise wrong. On the other hand, there are aspects of a turbulent flow that are less
sensitive to perturbations, so that certain mean value output, such as mean values in time of drag
and lift forces, for example, may be approximated from a DNS solution to an accuracy of say a
few percent.

The traditional approach to get around the impossibility (i) of DNS at high Reynolds numbers
is to seek to approximate some average of the turbulent flow field. One such approach is large
eddy simulation (LES), where the NS equations are averaged, using a filter operator, resulting in
a new set of equations for the filtered flow variables, involving the so-called Reynolds stresses,
due to filtering of the non-linear term in the NS equations. The Reynolds stresses depend on the
unfiltered velocity field and thus need to be modelled in terms of the filtered velocity field in a
turbulence model, or subgrid model, which is referred to as the closure problem of turbulence.
Many subgrid models for LES have been proposed, typically having a dissipative nature, and we
refer to [4] for an overview of LES and subgrid modelling. Mean value output is then computed
by postprocessing the LES solution.

LES is a popular method, and several computational studies for the flow past a circular cylinder
at Re=3900 have been performed using LES, see e.g. [5–7]. Although, there are several problems
with LES, in particular: (i) the closure problem is not solved; many different subgrid models
are being used, and the models seem to be problem dependent and highly influenced by the
numerical method used, and (ii) the definition of the LES solution close to boundaries is not always
clear [8].

G2 is an adaptive stabilized Galerkin finite element method. In [9, 10] G2 is introduced as an
adaptive computational method for turbulent flow, where a chosen mean value output M(·) is
computed to a specified tolerance TOL, using a minimal number of degrees of freedom from the
NS equations. No filtering is used, and thus the introduction of Reynolds stresses is avoided, and
the closure problem (i) of LES is circumvented, in the sense that no Reynolds stresses need to
be modelled, which greatly simplifies turbulence simulation. The complication (ii) of LES is also
avoided.
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We sometimes refer to G2 for turbulent flow as adaptive DNS/LES, where adaptively some
parts of the flow are fully resolved in a DNS, whereas other parts are left underresolved in a LES
with the stabilization in G2 acting as a simple subgrid model.

G2 is based on a posteriori error estimates, where the output sensitivity information is obtained
by computational approximation of an associated dual problem, linearized at an approximate G2
solution Û , with data coupling to the output of interest. We thus solve the minimization problem:
Find a mesh with a minimal number of degrees of freedom, such that

|M(û)−M(Û )|�TOL (1)

where û is a representative solution to the NS equations, such that M(û) is the target value for
the output M(·). In this paper, we only consider adaptive refinement of the spatial mesh, with the
time step being proportional to the smallest cell diameter in the mesh. The details in the definition
of û are related to the question of output uniqueness of solutions to the NS equations [3]. For our
purposes in this paper, it suffices to consider û as a solution to the NS equations, such that M(û)

is the target output that we try to approximate.
Depending on the output we want to compute, the complexity of the flow, and the computer

resources we have available, we may find it impossible to compute the output to the desired
accuracy. A way out of this problem is then either to seek more powerful computer resources,
settle for a less sharp tolerance, or to aim for a less demanding output.

A key to the success of G2 is that dual solutions corresponding to certain mean value outputs
are stable with respect to the linearization at Û , and thus that the a posteriori output error estimate
can be trusted. That is, small perturbations in Û result in small changes in the dual solution,
which makes it possible to approximate û by Û in the linearization of the dual problem. Questions
of computability, predictability, and uniqueness of turbulent solutions to the NS equations are
investigated in [3], where the stability of the dual solution under perturbations from linearization
errors is investigated computationally for a number of turbulent flow problems.

For an overview of adaptive finite element methods including references, we refer to the survey
articles [11–13]. For incompressible flow, applications of adaptive finite element methods based on
duality have been used to compute quantities of interest such as the drag force for two-dimensional
stationary benchmark problems in [14, 15]. In [16] time-dependent problems in three dimensions
are first considered, and the extension of this framework to LES is investigated in [17]. The
generalization to turbulent flow is first presented in [9, 10], with applications to flow around a
surface mounted cube, and a square cylinder, and in [3] the basis for this approach for turbulent
flow in general is investigated.

Owing to the possibilities offered by G2, it is important to assess the method for available
benchmark problems. In [10] the flow around a surface mounted cube and the flow around a square
cylinder are investigated, and in this paper we apply G2 to the problem of computing the mean
drag coefficient cD for a circular cylinder at Re=3900. The circular geometry of the cylinder
makes this a much more challenging problem than the problems considered in [10] with square
geometries. The reason for this is that for the square geometries, the separation of the flow is
determined by the geometry, with separation at the upstream edges. On the other hand, for the
problem considered in this paper, the separation depends on the Reynolds number.

We present results showing that we are able to compute cD to an accuracy of a few percent,
corresponding to the accuracy in experimental results, using less than 105 mesh points in space.
This is a very low number of mesh points, compared with what is generally assumed to be necessary
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for accurate prediction of drag for this problem. Of course, the number of mesh points is not
the only factor in determining the overall computational cost. But in general few mesh points
are desirable, and we find here that we are able to use a standard PC for advanced turbulence
simulations.

Apart from being able to approximate cD, we are able to capture the correct Strouhal number
St and pressure distribution on the cylinder. We also compute cD for the corresponding flow at
Re=100, illustrating differences in the solution as well as in the adaptive algorithm, compared
with the flow at Re=3900.

In this paper we use computational meshes that do not change with time, and we use a fixed
time step size for each mesh, proportional to the smallest cell diameter.

In Sections 2–5 we recall the discretization of the incompressible NS equations using G2, and
the adaptive algorithm for the computation of the drag coefficient. In Section 6 we present the
computational model used, and in Sections 7–9 we present computational results.

2. THE NS EQUATIONS

The incompressible NS equations expressing conservation of momentum and incompressibility of
a unit density Newtonian fluid with constant kinematic viscosity �>0 enclosed in a volume �
in R3 (where we assume that � is a polygonal domain) with homogeneous Dirichlet boundary
conditions take the form: Find û=(u, p) such that

u̇+(u ·∇)u−��u+∇ p = f in �× I

∇ ·u = 0 in �× I

u = 0 on ��× I

u(·,0) = u0 in �

(2)

where u(x, t)=(ui (x, t)) is the velocity vector; p(x, t) is the pressure of the fluid at (x, t); and
f , u0, I =(0,T ) are given driving force, initial data and time interval, respectively. The quantity
��u−∇ p represents the total fluid force and may alternatively be expressed as

��u−∇ p=div�(u, p) (3)

where �(u, p)=(�i j (u, p)) is the stress tensor, with components �i j (u, p)=2��i j (u)− p�i j ,
composed of the stress deviatoric 2��i j (u) with zero trace and an isotropic pressure: here
�i j (u)=(ui, j +u j,i )/2 is the strain rate tensor, with ui, j =�ui/�x j , and �i j is the usual Kronecker
delta, the indices i and j ranging from 1 to 3. We assume that (2) is normalized so that both
the reference velocity and typical length scale are equal to one. The Reynolds number Re is then
equal to �−1.

3. DISCRETIZATION: cG(1)cG(1)

The cG(1)cG(1) method is a variant of the general Galerkin G2 method [3], using the continuous
Galerkin method cG(1) in time. With cG(1) in time, the trial functions are continuous piecewise
linear and the test functions are piecewise constant. cG(1) in space corresponds to both test
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functions and trial functions being continuous piecewise linear. Let 0= t0<t1< · · ·<tN =T be a
sequence of discrete time steps with associated time intervals In =(tn−1, tn] of length kn = tn− tn−1
and space–time slabs Sn =�× In , and let Wn ⊂H1(�) be a finite element space consisting of
continuous piecewise linear functions on a mesh Tn ={K } of mesh size hn(x) with Wn

w the
functions v∈Wn satisfying the Dirichlet boundary condition v|�� =w.

We seek Û =(U, P), continuous piecewise linear in space and time; the cG(1)cG(1) method for
the NS equations (2) with homogeneous Dirichlet boundary conditions reads: For n=1, . . . ,N ,
find (Un, Pn)≡(U (tn), P(tn)) with Un ∈V n

0 ≡[Wn
0 ]3 and Pn ∈Wn , such that

((Un−Un−1)k−1
n +Ū n ·∇Ū n,v)+(2��(Ū n),�(v))−(Pn,∇ ·v)

+(∇ ·Ū n,q)+SD�(Ū
n, Pn;v,q)=( f,v) ∀v̂=(v,q)∈V n

0 ×Wn (4)

where Ū n = 1
2 (U

n+Un−1), with the stabilizing term

SD�(Ū
n, Pn;v,q)≡(�1(Ū

n ·∇Ū n+∇Pn− f ),Ū n ·∇v+∇q)+(�2∇ ·Ū n,∇ ·v)

with �1= 1
2 (k

−2
n +|U |2h−2

n )−1/2 in the convection-dominated case �<Ū nhn and �1=�1h2n other-
wise, �2=�2hn if �<Ū nhn and �2=�2h2n otherwise, with �1 and �2 being positive constants of
unit size (in this paper, we have �1=�2=1), and

(v,w)= ∑
K∈Tn

∫
K

v ·wdx

(�(v),�(w))=
3∑

i, j=1
(�i j (v),�i j (w))

We note that the viscous term (2��(U ),�(v)) may alternatively occur in the form (�∇U,∇v)=∑3
i=1(�∇(U )i ,∇vi ). In the case of Dirichlet boundary conditions, the corresponding variational

formulations are equivalent, but not so in the case of Neumann boundary conditions. If we have
Neumann boundary conditions, we use the standard technique to apply these boundary conditions
weakly.

4. COMPUTATION OF DRAG

An alternative representation of the drag of a body in a fluid is presented in [15] using a volume
integral, which is shown to be more accurate than the standard representation in terms of a surface
integral. The volume integral takes the following form:

N (�(û))= 1

|I |
∫
I
(u̇+u ·∇u− f,�)−(p,∇ ·�)+(2��(u),�(�))+(∇ ·u,�)dt (5)

where � is a function defined in the fluid volume �, being equal to a unit vector along the channel
in the direction of the flow on �0, the surface of the body in contact with the fluid, and zero on
the remaining part of the boundary �1=��\�0 of the fluid volume. The representation (5) is
independent of � and the particular extension of � away from the boundary.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1241–1258
DOI: 10.1002/fld



1246 J. HOFFMAN

Here we think of û=(u, p) as being a solution to (2) in the fluid volume � surrounding the
body (using suitable boundary conditions as specified below), defining the target output N (�(û)),
with sufficient regularity for (5) to be well defined.

We can to compute an approximation of the drag N (�(û)) from a cG(1)cG(1) solution Û =(U, P)

using the formula

Nh(�(Û )) = 1

|I |
∫
I
(U̇+U ·∇U− f,�)−(P,∇ ·�)

+(2��(U ),�(�))+(∇ ·U,�)+SD�(U, P;�,�)dt (6)

where now � and � are finite element functions (with as before �=� on �0 and �=0 on �1),
and where U̇ =(Un−Un−1)/kn on In . We note the presence of the stabilizing term SD� in (6),
compared with (5), which is added in order to obtain the independence of Nh(�(Û )) from the
choice of (�,�), given by (4).

5. AN ADAPTIVE ALGORITHM

We introduce the following dual problem: Find �̂=(�,	) with �=� on �0 and �=0 on �1,
such that

−�̇−(u ·∇)�+∇U ·�−���+∇	 = 0 in �× I

∇ ·� = 0 in �× I

�(·,T ) = 0 in �

(7)

where (∇U ·�) j =(U ), j ·�.
Replacing the exact dual solution �̂ by a computed approximation �̂h =(�h,	h), we are led to

the following a posteriori output error estimate [3, 9, 10], assuming sufficient regularity of �̂h :

|N (�(û))−Nh(�(Û ))|≈
∣∣∣∣∣

∑
K∈T

EK ,h

∣∣∣∣∣ (8)

where EK ,h =eKD,h+eKM,h is an error indicator for element K in the mesh T, and

eKD,h = 1

|I |
∫
I
((|R1(U, P)|K +|R2(U, P)|K ) ·(Chh

2|D2�h |K +Ckk|�̇h |K )

+‖R3(U )‖K ·(Chh
2‖D2	h‖K +Ckk‖	̇h‖K ))dt

eKM,h = 1

|I |
∫
I
|SD�(U, P;�h,	h)K |dt

where we may view eKD,h as an error contribution from the Galerkin part of the cG(1)cG(1)

discretization, and eKM,h a contribution from the stabilization in cG(1)cG(1) on element K , and k
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and h are the time step and the local mesh size, respectively. The residuals Ri are defined by

R1(U, P) = U̇+U ·∇U+∇P− f −��U

R2(U, P) = �D2(U )

R3(U, P) = ∇ ·U
(9)

with

D2(U )(x, t)= max
y∈�K

(hn(x))
−1

∣∣∣∣
[
�U
�n

(y, t)

]∣∣∣∣ (10)

for x ∈K , with [·] the jump across the element edge �K . D2 denotes second-order spatial deriva-
tives, and we write |w|K ≡(‖w1‖K ,‖w2‖K ,‖w3‖K ) with ‖w‖K =(w,w)

1/2
K , and let the dot denote

the scalar product in R3.
Here R1(U, P) is defined elementwise, and with piecewise linears in space the Laplacian �U

is zero. We have that R1(U, P)+R2(U, P) bounds the residual of the momentum equation, with
the Laplacian term bounded by the second-order difference quotient D2(U ) arising from the
jumps of normal derivatives across element boundaries. In the computations, we use Ck = 1

2 and
Ch = 1

8 as constant approximations of the interpolation constants in (8), where these values are
motivated by simple analysis on reference elements. Non-Dirichlet boundary conditions, such
as slip conditions at lateral boundaries and transparent outflow conditions, introduce additional
boundary terms in the a posteriori error estimate (8). But since the dual solutions for the problem in
this paper are small at such non-Dirichlet boundaries, we neglect the corresponding boundary terms
in (8).

The dual problem (7) is a linear convection–diffusion–reaction problem where the convection
acts backward in time and in the opposite direction of the exact flow velocity u. The coefficient
∇U of the reaction term is locally large in turbulent regions, and thus potentially generating rapid
exponential growth. However, ∇U is fluctuating, and the net effect of the reaction term with
respect to drag in this paper turns out to generate slower growth, as we learn from computing
approximations of the dual solution. We have the same experience from computing dual solutions
related to mean value output in other turbulent flow problems [3, 9, 10], where we find that the
dual solution is stable under perturbations, and thus (8) can be trusted even if we have errors in �̂h
from computational approximation, and from linearizing at the approximate convection velocity U
instead of the exact velocity u.

In this paper, we keep the space meshT and time step k constant in time, with the time step being
equal to the smallest element diameter in the space mesh, and we use an algorithm for adaptive
mesh refinement in space, based on the a posteriori error estimate (8), for the approximation of
mean drag, of the form:

Given an initial coarse computational space mesh T0, start at k=0, then

(1) Compute approximation of the primal problem using Tk .
(2) Compute approximation of the dual problem using Tk .
(3) If |∑K∈TkEk

K ,h |<TOL then STOP, else:

(4) Refine a fraction of the elements in Tk with largest Ek
K ,h →Tk+1.

(5) Set k=k+1, then goto (1).
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6. COMPUTATIONAL MODEL

We consider the flow past a circular cylinder of diameter D and length 4D, with the cylinder in the
direction of the x3-axis, subject to a unit streamwise velocity inflow condition (in the x1-direction)
in a channel of length 21D, width 4D, and height 14D. We use no-slip boundary conditions on
the cylinder, slip boundary conditions on the lateral walls of the channel, and a transparent outflow
boundary condition [3] at the end of the channel. We consider the cases of Re=100 and 3900,
with the Reynolds numbers being based on the cylinder diameter D.

In this paper we want to compute the drag coefficient cD, defined as a global average of a
normalized drag force on the cylinder from the flow. We seek to approximate cD by c̄D, a normalized
drag force averaged over a finite time interval I =[0,35D/U∞] at fully developed flow, defined by

c̄D≡ 1
1
2U

2∞A
×N (�(û)) (11)

where U∞ =1 is the inflow velocity, A=D×4D=4D2 is the cylinder area facing the mean flow,
and N (�(û)) is defined in (5). In computations, we approximate c̄D by c̄hD defined by

c̄hD= 1
1
2U

2∞A
×Nh(�(Û )) (12)

with Nh(�(Û )) being defined by (6). Thus, we may use a scaled version of the a posteriori error
estimate (8) to estimate the error |c̄D− c̄hD|.

7. COMPARISON WITH EXPERIMENTAL DATA

The flow past a circular cylinder is a well-documented problem, with many experimental reference
values available. The reference results in this section are taken from [1, 2, 5–7] and references
therein. Approximate solutions using G2 are plotted in Figures 1 and 2, where we observe vortex
shedding, and for Re=3900 a large turbulent wake attached to the cylinder.

In Figure 3, we plot computational approximations of the drag coefficient, as we refine the
mesh. For Re=100 we have convergence to c̄hD≈1.47 for the finest mesh, a value that is more or
less constant for all meshes with more than 26 624 nodes, and this value for the drag coefficient is
within the experimental tolerance. For Re=3900, we have c̄hD≈0.97 for the finest mesh, and we
note that c̄hD is within the experimental tolerance cD=0.98±0.05 for all meshes using more than
28831 nodes in the mesh. We are also able to capture the correct Strouhal numbers, with St=0.16
for Re=100 and St≈0.22 for Re=3900.

For circular cylinders, it is common to study the mean surface pressure on the cylinder as a
function of an angle starting from the stagnation point at the leading edge of the cylinder. We
define the pressure coefficient cp by

cp = p− p∞
1
2U

2∞
(13)
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Figure 1. Re=100: magnitude of velocity |U | (upper) and pressure P (lower) in the midsections of the
x1x2- and x1x3-planes, respectively.

where p is averaged in time and in the x3-direction, and where U∞ and p∞ are the free stream
velocity and the free stream pressure, respectively. In Figure 4 we plot the pressure coefficients,
both matching experimental results, with a base pressure coefficient CPb =−0.71 for Re=100 and
CPb =−0.90 for Re=3900.
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Figure 2. Re=3900: magnitude of velocity |U | (upper) and pressure P (lower) in the midsections of the
x1x2- and x1x3-planes, respectively.

8. COMPARISON WITH LES COMPUTATIONS

The idea of G2 is to compute a certain output to a given tolerance, using a minimal number of
degrees of freedom. We are thus interested in comparing the number of mesh points needed in G2
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GENERAL GALERKIN G2 1251

Figure 3. Approximate drag coefficient c̄hD as a function of the 10-logarithm of
the number of mesh points in space with (‘o’) and without (‘:’) the stabilizing

term in (6), for Re=100 (upper) and Re=3900 (lower).

to compute a certain output, compared with other approaches. Using less than 105 mesh points
in space, we are able to capture the correct cD, cp, CPb , and St, and using less than 30 000 mesh
points we are able to capture cD within the experimental tolerance.

In [5–7] LES is used to simulate flow past a circular cylinder at Re=3900, using various
numerical methods, subgrid models, and computational meshes. The mesh in [7] is of size 401×
120×48, and the results are within the experimental tolerances, and in [5] results for a mesh
with 1 333 472 mesh points are presented, also within the experimental tolerances. In [6] various
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Figure 4. Pressure coefficient cp as a function of an angle starting at the stagnation point,
for Re=100 (upper) and Re=3900 (lower).

numerical methods and subgrid models are used for meshes of size 165×165×32, 165×165×64,
and 209×165×32, with some results within the experimental tolerance, but others not, depending
on the subgrid models and the numerical methods used.

9. DUAL SOLUTION AND A POSTERIORI ERROR ESTIMATES

The solution to the dual problem contains information of how local errors influence the error in the
output of interest. In the a posteriori error estimate (8), the error in mean drag is estimated in terms
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Figure 5. Re=100: magnitude of dual velocity |�h | (upper) and dual pressure |	h | (lower) in the
midsections of the x1x2- and x1x3-planes, respectively.

of residuals, measuring the local error, weighted by derivatives of the dual solution, measuring the
influence of the non-zero residuals on the error in mean drag.

The data in the dual problem are given by the output of interest, with a mean value output
corresponding to regular data, and more local output corresponding to more irregular data. For
computation of mean drag, the data to the dual problem are constant boundary conditions on the
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Figure 6. Re=3900: magnitude of dual velocity |�h | (upper) and dual pressure |	h | (lower) in the
midsections of the x1x2- and x1x3-planes, respectively.

cylinder of a unit vector in the streamwise direction, and the dual solution gives the information
of what part of the computational domain is important for accurate approximation of mean drag.

In Figures 5 and 6, we plot snapshots of the dual solutions corresponding to approximation of
mean drag for Re=100 and 3900, and in Figure 7 we plot the resulting computational meshes.
Studying the different meshes, we note that the mesh corresponding to Re=100 is almost symmetric
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Figure 7. Meshes for Re=100 (upper), and Re=3900 (lower), in the midsections of
the x1x2- and x1x3-planes respectively.

in the streamwise direction and that the mesh refinement is spread wider vertically for this laminar
flow than for the turbulent flow corresponding to Re=3900. For Re=3900, the mesh refinement
is concentrated to the boundary layer of the cylinder and to the turbulent wake. Overall, the mesh
refinement is more localized for the higher Reynolds number, which is consistent with the dual
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Figure 8. A posteriori error estimates from (8): eD,h =∑
K∈T eKD,h (‘o’) and eM,h =∑

K∈T eKM,h (‘x’) for
Re=100 (upper) and Re=3900 (lower).

problem being convection dominated, whereas the dual problem for the lower Reynolds number
is more viscous and thus spreads the data more.

In Figure 8 we plot a posteriori error estimates for cD. We note that for the laminar flow at
Re=100, the convergence rate is high and we may expect to obtain a sharp bound on the error by
further refining the mesh. For Re=3900 the situation is different. We cannot expect to determine
mean drag to an arbitrary small tolerance, due to the strong perturbation growth in a turbulent flow,
with a highly fluctuating flow field. This connects the questions of uniqueness and computability
of mean values in a turbulent flow [3].
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We can compare this with the problem of predicting the temperature in London, where we
cannot expect to be able to predict the daily temperature on July 1 each year to a tolerance less
than say ±10◦C, which is typically of no interest. On the other hand, we may be able to predict
the monthly mean temperature of July to a tolerance of say ±2◦C, which is of interest, and which
we find in a typical guide book for London.

But not even for the monthly mean value, we can expect to predict the temperature to an arbitrary
small tolerance. The same is true for the approximation of cD for a circular cylinder in a turbulent
flow. We cannot expect the tolerance, in terms of the a posteriori error estimates, to be arbitrary
small. Judging from experimental results, and the approximate values in Figure 3, a tolerance of
about ±0.05–0.1 for cD seems reasonable, and thus the a posteriori error estimate in Figure 8 for
the finest mesh would indicate an error that is about a factor 4–8 too large, which is similar to
our experiences from other problems of the same type [3], where the overestimation of the output
error results from taking absolute values in space and time, for example.

10. SUMMARY

We have shown that we are able to use G2 to compute the drag coefficient cD for the turbulent flow
past a circular cylinder at Reynolds number Re=3900. We find that we are able to approximate
cD to an accuracy of a few percent, corresponding to the accuracy in experimental results, using
less than 105 mesh points in space, which makes the simulations possible using a standard PC.
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